

The Little Neutral One

Mary Bishai Brookhaven National Laboratory

Neutrinos: A History

Neutrino Mixing

Summary

The Little Neutral One

A brief introduction to neutrinos

Mary Bishai Brookhaven National Laboratory

August 16, 2013

About Neutrinos

The Little Neutral One

Mary Bishai Brookhaven National Laboratory

Neutrinos: A History

Neutrino Mixing

Summary

From Symmetry Magazine, Feb 2013

Cosmic Gall

- Neutrinos, they are very small.
- They have no charge and have no mass
- And do not interact at all.
- The earth is just a silly ball
- To them, through which they simply pass,
- Like dustmaids down a drafty hall
- Or photons through a sheet of glass.
- They snub the most exquisite gas,
- Ignore the most substantial wall,
- Cold-shoulder steel and sounding brass,
- Insult the stallion in his stall,
- And, scorning barriers of class,
- Infiltrate you and me! Like tall
 And painless guillotines, they fall
- Down through our heads into the grass.
- At night, they enter at Nepal
- And pierce the lover and his lass
- From underneath the bed-you call
- It wonderful; I call it crass.

Credit: "Cosmic Gall" from Collected Poems 1953-1993, by John Updike. Copyright John Updike.

The Little Neutral One

Mary Bisha Brookhaver National Laboratory

Neutrinos: A History

Neutrino Mixing

Summa

A BRIEF HISTORY OF THE NEUTRINO

The Little Neutral One

Mary Bisha Brookhaver National Laboratory

Neutrinos: A History

Neutrino Mixing

Summar

<u>Before 1930's</u>: beta decay spectrum continuous - is this energy non-conservation?

The Little Neutral One

Mary Bisha Brookhaver National Laboratory

Neutrinos: A History

Neutrino Mixing

Summa

<u>Dec 1930:</u> Wolfgang Pauli's letter to physicists at a workshop in Tubingen:

Dear Radioactive Ladies and Gentlemen.

Wolfgang Pauli

......, I have hit upon a desparate remedy to save the "exchange theorem" of statistics and the law of conservation of energy. Namely, the possibility that there could exist in the nuclei electrically neutral particles, that I wish to call neutrons.... The mass of the neutrons should be of the same order of magnitude as the electron mass and in any event not larger than 0.01 proton masses. The continuous beta spectrum would then become understandable by the assumption that in beta decay a neutron is emitted in addition to the electron such that the sum of the energies of the neutron and the electron is constant........

Unfortunately, I cannot appear in Tubingen personally since I am indispensable here in Zurich because of a ball on the night of 6/7 December. With my best regards to you, and also to Mr Back. Your humble servant

. W. Pauli

The Little Neutral One

Mary Bisha Brookhaver National Laboratory

Neutrinos: A History

Mixing

Summa

1932: James Chadwick discovers the neutron, $mass_{neutron} = 1.0014 \times mass_{proton} \text{ - its too heavy - cant be Pauli's particle}$

James Chadwick

The Little Neutral One

Mary Bisha Brookhaver National Laboratory

Neutrinos: A History

Mixing

Summar

Solvay Conference, Bruxelles 1933: Enrico Fermi proposes to name Pauli's particle the "neutrino".

Enrico Fermi

Particle physics units and symbols

The Little Neutral One

Mary Bisha Brookhave National Laboratory

Neutrinos: A History

Mixing Mixing

Summar

Symbols used for some common particles:

Symbol	Particle		
$\overline{}$	Neutrino		
γ	Photon		
\mathbf{e}^-	Electron		
$\mathbf{e^+}$	Anti-electron (positron)		
р	proton		
n	neutron		
N	nucleon - proton or neutron		

Particle physicists express masses in terms of energy, mass = E/c², mass $_{proton} = 1.67 \times 10^{-24} g \approx 1 \times 10^9$ electron-volts = 1GeV/c²

Finding Neutrinos...

The Little Neutral One

Neutrinos: A History

1950's: Fred Reines at Los Alamos and Clyde Cowan use the Hanford nuclear reactor (1953) and the new Savannah River nuclear reactor (1955) to find neutrinos. A detector filled with water with CdCl2 in solution was located 11 meters from the reactor center and 12 meters underground.

The detection sequence was as follows:

$$\boxed{1} \ \bar{\nu_e} + p \rightarrow n + e^+$$

3 n +
108
 Cd \rightarrow 109 Cd* \rightarrow 109 Cd + γ ($\tau = 5\mu$ s).

Neutrinos first detected using a nuclear reactor!

ν : A Truly Elusive Particle!

The Little Neutral One

Mary Bisha Brookhaven National Laboratory

Neutrinos: A History

Neutrino Mixing

Summar

Reines and Cowan were the first to estimate the interaction strength of neutrinos.

The cross-section is $\sigma \sim 10^{-43} {\rm cm}^2$ per nucleon (p,n).

$$\nu$$
 mean free path = $\frac{\text{Mass of the proton}}{\sigma \times \text{density}}$

$$=\frac{1.67\times10^{-24}g}{10^{-43}cm^2\times11.4g/cm^3}\approx1.5\times10^{16}m=\text{1.6 LIGHT YEARS}$$

A proton has a mean free path of 10cm in lead

Neutrino detectors have to be MASSIVE

Discovery of the Muon (μ)

The Little Neutral One

Mary Bishai Brookhaven National Laboratory

Neutrinos: A History

Neutrino Mixing 1936: Carl Andersen, Seth Neddermeyer observed an unknown charged particle in cosmic rays with mass between that of the electron and the proton - called it the μ meson (now muons).

The Lepton Family and Flavors

The Little Neutral One

Mary Bisha Brookhaver National Laboratory

Neutrinos: A History

Mixing

Summar

The muon and the electron are different "flavors" of the same family of elementary particles called leptons.

Generation	1	H H	III
Lepton	e^-	$oldsymbol{\mu}$	au
Mass (GeV)	0.000511	0.1057	1.78
Lifetime (sec)	stable	2.2×10^{-6}	2.9×10^{-13}

Neutrinos are neutral leptons. Do ν 's have flavor too?

Discovery of the Pion: 1947

The Little Neutral One

Mary Bishai Brookhaven National Laboratory

Neutrinos: A History

Mixing

Cecil Powell takes emulsion photos aboard high altitude RAF flights. A charged particle is found decaying to a muon:

 $\mathsf{mass}_{\pi^-} = 0.1396 \; \mathsf{GeV/c^2}$, $\tau = 26 \; \mathsf{ns}.$

Pions are composite particles from the "hadron" family which includes protons and neutrons.

Neutrinos have Flavors

The Little Neutral One

Mary Bisha Brookhaver National Laboratory

Neutrinos: A History

Neutrino Mixing

Summar

1962: Leon Lederman, Melvin Schwartz and Jack Steinberger use BNL's Alternating Gradient Synchrotron (AGS) to produce a beam of neutrinos using the decay $\pi \to \mu \nu_{\rm X}$

The AGS

Making ν 's

Result: 40 neutrino interactions recorded in the detector, 6 of the resultant particles where identified as background and 34 identified as $\mu \Rightarrow \nu_x = \nu_\mu$

The first accelerator neutrino experiment was at the AGS.

Number of Neutrino Flavors: Particle Colliders

The Little Neutral One

Mary Bisha Brookhaver National Laboratory

Neutrinos: A History

Neutrino Mixing Summary <u>1980's - 90's:</u> The number of neutrino types is precisely determined from studies of Z^0 boson properties produced in e^+e^- colliders.

The LEP e⁺e⁻ collider at CERN, Switzerland

The 27km LEP ring was reused to build the Large Hadron Collider

The Particle Zoo

The Little Neutral One

Mary Bishai Brookhaven National Laboratory

Neutrinos: A History

Neutrino Mixing

Summar

Sources of Neutrinos

few/cm²/s

 $10^{5}/cm^{2}/s$ (at 1km)

varies

Neutrinos and Todays Universe

The Little Neutral One

Mary Bisha Brookhaven National Laboratory

Neutrinos: A History

Neutrino Mixing

Summary

The Little Neutral One

Mary Bishai Brookhaven National Laboratory

Neutrinos: History

Neutrino Mixing

Summar

NEUTRINO MIXING AND OSCILLATIONS

Some Quantum Mechanics

The Little Neutral One

Mary Bisha Brookhaver National Laboratory

Neutrinos: / History

Neutrino Mixing

Julillie

1924: Louis-Victor-Pierre-Raymond, 7th duc de Broglie proposes in his doctoral thesis that all matter has wave-like and particle-like properties.

For highly relativistic particles : energy \approx momentum

De Broglie

Wavelength (nm)
$$\approx \frac{1.24 \times 10^{-6} \text{ GeV.nm}}{\text{Energy (GeV)}}$$

Neutrino Mixing

The Little Neutral One

Mary Bisha Brookhaver National Laboratory

Neutrinos: A History

Neutrino Mixing

Summary

1957,1967: B. Pontecorvo proposes that neutrinos of a particular flavor are a mix of quantum states with different masses that propagate with different phases:

The interference of water waves coming from two sources.

The inteference pattern depends on the difference in masses

Neutrino Oscillations

The Little Neutral One

Mary Bisha Brookhaver National Laboratory

Neutrinos: A History

Neutrino Mixing

Summar

Neutrino mass states $interfere \Rightarrow$ neutrinos oscillate between different flavors:

If neutrinos oscillate ⇒ neutrinos have mass!

The Homestake Experiment

The Little Neutral One

Mary Bisha Brookhaven National Laboratory

Neutrinos: / History

Neutrino Mixing

Julilin

1967: Ray Davis from BNL installs a large detector, containing 615 tons of tetrachloroethylene (cleaning fluid), 1.6km underground in Homestake mine, SD.

1
$$\nu_{\rm e}^{\rm sun} + ^{37} {\rm CL} \rightarrow {\rm e}^- + ^{37} {\rm Ar}, \ \tau(^{37} {\rm Ar}) = 35 {\rm days}.$$

2 Number of Ar atoms pprox number of $u_{\rm e}^{\rm sun}$ interactions.

Ray Davis

Results: 1969 - 1993 Measured 2.5 \pm 0.2 SNU (1 SNU = 1 neutrino interaction per second for 10^{36} target atoms) while theory predicts 8 SNU. This is a ν_e^{sun} deficit of 69%.

Solar $\nu_{\rm e}$ disappearance \Rightarrow

first experimental hint of oscillations

Water Cerenkov Neutrino Detectors

The Little Neutral One

Mary Bishai Brookhaven National Laboratory

Neutrinos: A History

Neutrino Mixing

Summar

A relativistic charged particle going through water, produces a ring of light

The Irvine-Michigan-Brookhaven Detector

With water, get MASSIVE detectors (kilo-tons)

The Super-Kamiokande Detector Mount Ikena, Kamioka, Japan

The Little Neutral One

Mary Bishai Brookhaven National Laboratory

Neutrinos: History

Neutrino Mixing

Summar

A huge 50kT double layered tank of ultra pure water surrounded by 11,146 20" diameter photomultiplier tubes.

Identifying u_{μ} and u_{e} Interactions

The Little Neutral One

Mary Bisha Brookhaver National Laboratory

Neutrinos: A History

Neutrino Mixing

Summar

FIG. 24. An e-like (left) and a µ-like (right) event observed in the Super-Kamiokande detector.

KamLAND: Reactor $\bar{\nu_{\rm e}}$ Detector Kamioka Mine

The Little Neutral One

Mary Bishai Brookhaven National Laboratory

Neutrinos: History

Neutrino Mixing

Summ

Japan's electric power is mostly from nuclear reactors, the Kamioka Mine is bombarded by $\bar{\nu_e}$ from

World reactors + Research reactors : 0.96% Korean reactors : 3.2%

Neutrino Oscillation Results

The Little Neutral One

Mary Bishai Brookhaven National Laboratory

Neutrinos: A

Neutrino Mixing

Summar

Clear wiggles!, different beat frequencies

Neutrino Mass and Mixing

Mary Bishai Brookhaven National Laboratory

Neutrinos: A History

Neutrino Mixing

Summary

What is the absolute mass of the lowest mass state? OR How heavy is ν_0 Which is larger m₃ or m₁?

Measurement of the Absolute Neutrino Mass

The Little Neutral One

Mary Bishai Brookhaven National Laboratory

Neutrinos: A History

Neutrino Mixing

Summar

Neutrino Mass Mysteries

The Little Neutral One

Mary Bisha Brookhaven National Laboratory

Neutrinos: A

Neutrino Mixing

Summary

Why are neutrino masses so small??

Charge-Parity Symmetry

The Little Neutral One

Mary Bishai Brookhaven National Laboratory

Neutrinos: A History

Neutrino Mixing

Summar

Charge-parity symmetry: laws of physics are the same if a particle is interchanged with its anti-particle and left and right are swapped. A violation of CP ⇒ matter/anti-matter asymmetry.

Charge-parity Symmetry and Neutrino Mixing

The Little Neutral One

Mary Bishai Brookhaven National Laboratory

Neutrinos: A History

Neutrino Mixing

Summar

Measuring v_{μ} oscillations over a distance of 1300km

Could this explain the excess of matter in the Universe?

Matter Effect on Neutrino Oscillation

The Little Neutral One

Mary Bisha Brookhaver National Laboratory

Neutrinos: A History

Neutrino Mixing

Summar

1978 and 1986: L. Wolfenstein, S. Mikheyev and A. Smirnov propose the scattering of ν_e on electrons in matter acts as a refrective index \Rightarrow neutrinos in matter have different effective mass than in vacuum. For $P_{\rm osc}=P(\nu_{\mu}\rightarrow\nu_e)$:

We can determine the mass ordering using $u_{\mu}
ightarrow
u_{e}$ oscillations

The Long Baseline Neutrino Oscillation Experiment

Measuring the mass ordering and $u/\bar{\nu}$ oscillation patterns.

The Little Neutral One

Mary Bisha Brookhaver National Laboratory

Neutrinos: / History

Neutrino Mixing

Summar

Practical Applications of Neutrinos

The Little Neutral One

Mary Bishai Brookhaven National Laboratory

Neutrinos: A History

Neutrino Mixing

Summar

Synergies and Applications - Examples

Cyclotrons for neutrino physics (and industrial applications)

Daedalus

Neutrino detectors for reactor monitoring and non-proliferation

remote discovery of undeclared nuclear reactors with large detectors at km scale

US Short-Baseline Experiment

reactor antineutrino studies at short baselines

Summary

The Little Neutral One

Mary Bisha Brookhaver National Laboratory

Neutrinos: A History

Mixing

Summary

We know there are 3 known neutrino flavors with non-zero mass that mix.

BUT- what we dont know is even more important:

- What is the absolute mass of v_e? Why is it so much smaller than the mass of other elementary particles such as quarks?
- What is the mass ordering i.e is $m_1 > m_3$? What fundamental symmetry of nature is responsible for this mass ordering?
- Are neutrinos responsible for the matter/anti-matter asymmetry in the Universe?
- Are there only 3 neutrinos?
- What are the practical applications of neutrino physics?

Lots of fun and challenges ahead.